introduction

type

control

options

fixings

finish

sizes

The LCS series diffuser has been developed to provide a simple and economical form of continuous slot air distribution system and is suitable for variable air volume schemes or fan coil applications.
The air direction blades are readily adjustable from the diffuser face and have been designed to minimise discharge air turbulence, resulting in low pressure loss and low noise generation characteristics.

LCS Flanged, Recessed and Plaster Frame.

Control options include diffuser mounted opposed blade dampers (OB) or spigot mounted flap dampers (FDQ Quadrant operated or FDC Cord operated).

A full range of plenums are available to suit a variety of installation conditions. See PART H for details.

We offer 2 types of fixing method. The first being the yoke strap fixing method which is offered as standard, providing ease of installation when used with Brooke air plenums. Installation details are shown on the installation page 11.

The second fixing method is via screw through plenum flange. This is used on plaster in frame. Again, further details regarding fixing can be found on the installation page.

The standard finish is satin anodised frame and ' T ' sections with matt black blades. A wide range of paint finishes are also available in BS or RAL colours. See PART I for details.

The following designations should be used when specifying the required finish:

A = Satin anodised frame with black blades.
$B=$ Specified frame colour with black blades

The LCS system is completely modular, offering single section lengths up to 2 m , in maximum widths of 6 slot.

The frame and intermediate sections incorporate alignment plate slots to ensure section joins. Preformed corner sections can also be supplied to suit building contours, thereby eliminating site trimming.

CURVED SIDE WALL (CSW)
Radius to be specified either convex or concave.

Linear diffusers

DIMENSIONS AND ORDERING DESIGNATIONS

dimensions

ordering designations

When ordering linear sections, state the number of slots required, the section length and the finish designation code.

When ordering corner sections, state the number of slots required, the inside lengths A and B, the angle and the finish designation code.
Note: dimensions A and B should be based on the reflected ceiling plan.

Corners are normally supplied as non active sections Other angles available.

The following tabulated data is based on a 1.2 m length of diffuser. Correction factors should be applied to the noise and throw data for continuous lengths. See table 1 on page 7 .

Maximum and minimum throws are based on jet terminal velocities (Vt) of 0.25 and $0.75 \mathrm{~m} / \mathrm{s}$ respectively and correspond to average room air velocities (Vr) of 0.1 and $0.25 \mathrm{~m} / \mathrm{s}$ with a cooling differential of $11^{\circ} \mathrm{C}$ and a room height of 2.7 m . Where the application height differs from this, throw selections should be adjusted accordingly; that is, increasing the throw by 1 m for every 1 m increase in height.

Projection data is based on a vertical free jet at a heating differential of $10^{\circ} \mathrm{C}$ and represents the point at which the jet has fully retarded. Correction factors can be applied for other heating differentials, as detailed in table 2 on page 7.

Noise data is based on one or two way horizontal throw configurations and is expressed in terms of NR level with a room absorption factor of 8 db .

When used in projection mode the noise levels are reduced by NR 10.

		AIR FLOW RATE (1/s/m)									
		20	40	60	80	100	120	140	160	180	200
LCS1	THROW MIN (m) MAX	0.7	1.4	2.1	2.7	3.4					
		2.7	4.3	5.7	7.0	7.8					
	PROJECTION (m)	0.7	1.8	3.0	4.5	6.0					
	Ps (Pa)		6	15	28	45					
	NR LEVEL		14	26	35	42					
LCS2	THROW (m)		1.2	1.6	2.0	2.5	3.0	3.4	3.8	4.2	4.7
			3.5	5.0	6.0	7.0	7.7	8.4	9.0	9.8	10.4
	PROJECTION (m)			1.7	2.5	3.3	4.2	5.2	6.2	7.3	8.5
	Ps (Pa)			3	6	10	14	21	28	35	45
	NR LEVEL				17	24	29	33	38	41	45

			AIR FLOW RATE (1/s/m)									
			100	125	150	175	200	225	250	275	300	325
LCS3	THROW MIN (m) MAX		2.1	2.5	3.0	3.5	4.0	4.4	4.8			
			6.0	7.2	8.2	9.1	9.8	10.5	10.9			
	PROJECTION (m)		2.3	3.2	4.0	5.0	6.0	7.0	8.0			
	Ps (Pa)		5	8	12	16	22	28	35			
	NR LEVEL			20	26	31	35	38	42			
LCS4	THROW (m)	$\begin{aligned} & \text { MIN } \\ & \text { MAX } \end{aligned}$	1.8	2.2	2.7	3.1	3.5	3.8	4.2	4.6	5.0	5.5
			5.6	6.7	7.7	8.7	9.5	9.8	10.5	11.0	11.4	12.0
	PROJECTION (m)			2.4	3.1	3.8	4.5	5.3	6.0	7.0	8.0	10.0
	Ps (Pa)			4	5	8	10	13	16	20	24	28
	NR LEVEL				17	22	27	30	34	37	40	42

Linear diffusers

		AIR FLOW RATE (1/s/m)									
		200	225	250	275	300	325	350	375	400	450
LCS5	THROW MIN (m) MAX	3.2	3.5	4.0	4.2	4.5	5.0	5.2	5.6		
		8.4	9.0	9.8	10.4	11.0	11.5	12.0	12.3		
	PROJECTION (m)	3.8	4.4	5.0	5.7	6.5	7.2	8.0	9.0		
	Ps (Pa)	7	9	11	14	17	20	23	27		
	NR LEVEL	21	25	28	32	34	36	38	41		
LCS6	THROW (m)	2.9	3.2	3.5	3.8	4.2	4.5	4.8	5.0	5.4	6.0
		8.0	8.6	9.3	10.0	10.5	11.0	11.5	11.9	12.2	13.0
	PROJECTION (m)	3.2	3.7	4.3	5.0	5.6	6.2	6.8	7.5	8.2	10.0
	Ps (Pa)	5	6	8	9	11	13	16	18	21	27
	NR LEVEL	16	19	23	26	29	31	34	36	38	42

Length correction factors

	ACTIVE DIFFUSER LENGTH (m)					
	0.5	1.0	1.2	2.0	2.5	3.0
Throw/Projection factor	0.7	0.8	1.0	1.1	1.25	1.5
NR addition	-4	-1	0	+2	+3	+5

Temperature correction factors

	TEMPERATURE DIFFERENTIAL $\left({ }^{\circ} \mathrm{C}\right)$					
	-10	0	+5	+10	+15	+20
Throw factor	1.0	1.1	1.15	1.2		
Projection factor	1.6	1.25	1.15	1.0	0.73	0.62

Exhaust correction factors

NR correction	-10
Pressure loss factor	0.8

